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Chapter 1 

 

The Fourier Transform and its Inverse 

 
1.1  The Fourier Transform 

Fourier analysis is concerned with the mathematics associated with a 
particular type of integral.  This integral can be written in the form 

                   (1.1)   

where  is said to be the Fourier transform of the function  If t has 
the dimensions of time, then  can be thought of as a time signal.  The 
dimensions of f are then inverse time with units such as cycles/sec or Hertz 
(Hz).  For time signals the Fourier transform is often written in terms of the 
radian frequency   In this case Eq. (1.1) can be written as 

      (1.2) 

The property of Fourier transforms that makes them useful is the fact that 
an inverse relation exists between  and  Thus, if  is given in 
terms of  by Eq. (1.1), it will be shown that  is given in terms  
by the inverse relation 

     (1.3) 

The inverse of Eq. (1.2) is given by 

                 (1.4)                                                         

G( f ) = g(t)e− j2π ft
−∞

∞

∫ dt

( )G f ( ).g t
( )g t

ω = 2π f .

( ) ( ) j tG g t e dtww
¥

-

-¥

= ò

( )G f ( ).g t ( )G f
( )g t ( )g t ( )G f

2( ) ( ) j ftg t G f e dfp
¥

-¥

= ò

1( ) ( )
2

j tg t G e dww w
p

¥

-¥

= ò



2 Chapter 1 

 

Figure 1.1  The function  rect( )t
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which follows from Eq. (1.3) with the change of variables   
Sometimes in dealing with time signals the factor in Eq. (1.4) is replaced 

by the factor multiplying the integrals in both Eqs. (1.2) and (1.4).  In 
using the forms of Eqs. (1.1) and (1.3), the factor appears in the exponents 
and does not appear in front of either integral.  We will consistently use the 
forms given in Eqs. (1.1) and (1.3) for the Fourier transform and its inverse. 

In this chapter, we will explore the nature of the relationship between Eqs. 
(1.1) and (1.3).  We begin by calculating the Fourier transform of a specific 
function  in Example 1. 

 
Example 1: The rect  Function 

Let  be a rectangular pulse of width 1 and height 1 as shown in Fig. 
1.1 and defined by 

     

 
 
 
 
 
 
 
 
 

 

From Eq. (1.1), we can then calculate  as  
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sinc f
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Figure 1.2  The function  sinc( )f
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 Figure 1.3  The function   ( )rect t N

      (1.5) 

and is shown in Fig. 1.2.  Thus,  and we can write 

      (1.6) 

where the symbol   can be read “has as its Fourier transform.” 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Example 2: The delta Function 

As a second example, calculate  when  is a rectangular pulse 

of width N as shown in Fig. 1.3.  We can write .  From Eq. 
(1.1) 
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 sinc( )  vs.  N Nf f
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Figure 1.4  The function  ( ) sincN Nf

   

  

                     (1.7) 

Thus, 

     (1.8) 

 

The function is shown in Fig. 1.4.  

 

 
 
 
 
 
 
 
 
 
 

 
Consider what happens now if N increases without limit.  The function 

 approaches the constant 1.  The value of  at  
grows without limit while at the same time the width of the function decreases 
and approaches zero.  Thus, in the limit as  the function 

 approaches something that looks like an infinite spike at the 
origin.  This resembles a special kind of function called a delta function, written 
as , which can be defined in a number of different ways.  One common 
way of defining the delta function is as follows 

   

       (1.9) 
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That is, the delta function is equal to zero everywhere except at 
, but is such that the area under the delta function remains equal to 

unity.  Can  approximate a delta function for large values of N?  

We have already seen that in the limit  the width of  
goes to zero.  We should therefore check to see if the area under the function 

 is equal to one. 

   

                      

where the integral 

    

 

can be obtained from integral tables or evaluated by certain techniques such 
as contour integration.  Thus, we see that for large values of N the function 

 can approximate a delta function and should approach a delta 
function in the limit as . 

Instead of defining the delta function by Eq. (1.9), an alternate approach 
is to define the delta function in terms of its sifting property, 

      (1.10) 

or, more generally 

     (1.11) 

Is this definition plausible and consistent with the definition given by Eq. 
(1.9)?  Figure 1.5a shows  multiplying an arbitrary function g(z) as in the 
integrand of Eq. (1.10).  Since  except at , the value of the 
integrand will be zero except at .  If in a small region about  we 
approximate g(z) by its value at , we can write 
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Figure 1.5  Sifting property of a delta function 
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Figure 1.6  Using a sinc function to approximate a delta function 

   

A similar argument can be applied to Eq. (1.11) using Fig. 1.5b.  Thus, 
Eqs. (1.10) and (1.11) seem plausible if not rigorously derivable from Eq. (1.9).  
Delta functions are useful because of this sifting property.  If the delta function 
is defined directly in terms of the sifting property of Eq. (1.11), then the 
properties given by Eq. (1.9) can be deduced. 

 
 
 
 

 

               (a)           (b) 
 

Example 3: The Inverse Fourier Transform 

If we now approximate  by the function  or  

by , then the picture of the sifting property looks like Fig. 

1.6. From Eq. (1.11), with this approximation  where 

    (1.12) 

We now expect that as , and 
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We can synthesize the function  from exponentials as 
shown in Eq. (1.7) in Example 2.  Thus, 

   (1.13) 

If we substitute Eq. (1.13) into Eq. (1.12) we can write 

    (1.14) 

Interchanging the order of integration in Eq. (1.14), we obtain 

    (1.15) 

But in Eq. (1.15) the integral involving  is just the Fourier transform 
 from Eq. (1.1).  Thus, Eq. (1.15) can be written as 

     (1.16) 

Now as we have seen that we expect .  Thus, Eq. 
(1.16) becomes 

     (1.17) 

which is just the inverse Fourier transform relation given by Eq. (1.3) that we 
set out to show. 

 
Example 4: Another Look at the Delta Function 

Recall from Example 2 that as , 

   
 

so that from Eq. (1.13) we can write 

( ) sinc ( )N N z t-

( )
2

2 ( )

2

 sinc ( )
N

j z t f

N

N N z t e dfp- -

-

- = ò

2
2 ( )

2

( )  ( )
N

j z t f
N

N

g t e df g z dzp
¥

- -

-¥ -

= ò ò

2
2 2

2

( ) ( )  
N

j tf j zf
N

N

g t e g z e dz dfp p
¥

-

- -¥

= ò ò

( )g z
( )G f

2
2

2

( ) ( )  
N

j tf
N

N

g t G f e dfp

-

= ò

N ®¥ ( ) ( )Ng t g t®

2( ) ( ) j ftg t G f e dfp
¥

-¥

= ò

N ®¥

( ) sinc ( ) ( )N N z t z td- ® -



8 Chapter 1 

 

     (1.18) 

Eq. (1.18) is an important result expressing the delta function in terms of 
an exponential integral.  Thus, although this integral does not exist in the 
ordinary sense, it can be written in terms of the delta function for purposes of 
calculation.   

For example, with these results we can now verify Eq. (1.3) in a simple and 
straightforward way.  Substituting Eq. (1.1) in Eq. (1.3) we can write 

   

           (1.19) 

 
Assume we can interchange the order of integration in Eq. (1.19) and then 

use Eq. (1.18) and Eq. (1.11) to write 
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thus verifying the inverse transform relation Eq. (1.3).  

Finally, note that if  in Eq. (1.1), then 
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We therefore obtain the Fourier transform pair 
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This, of course, is the same as the result of Example 2 in the limit as
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Figure 1.7  Fourier transforming property of a lens 
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1.2  Fourier Optics 

In the Fourier transform  given by Eq. (1.1), the function  was 
thought of as a time signal where t has the dimensions of time and the 
dimensions of f are inverse time with units such as cycles/sec or Hertz (Hz).  It 
is also possible to take the Fourier transform of a spatial function , where 
x has the units of length.  In this case, we could write the Fourier transform as    

                  (1.23) 

where  is a spatial frequency with units of inverse length, sometimes given 
as lines per millimeter. 

We can define a two-dimensional Fourier transform, , of a two-
dimensional spatial function, , by the equation 

 

                 (1.24) 

Consider the optical system shown in Fig. 1.7 in which a point source of 
coherent laser light at point S is focused by a lens at point T at the origin of the 
p-q plane.  
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If a glass plate containing an image with a transmittance given by  
is placed in the x-y plane in Fig. 1.7, then in Appendix A we show that the 
complex amplitude of the optical signal in the p-q plane is given by 

     (1.25) 

where 

        

and         (1.26) 

   

 
and  is the wavelength of the laser light. 

Thus, to within a complex constant,  is the two-dimensional 
Fourier transform of   Thus, we can write 

       (1.27) 

The light intensity in the p-q plane is given by 

         (1.28) 

 
and is therefore proportional to the magnitude-squared of the two-dimensional 
Fourier transform of . 
 
Example 5: The Fourier Transform of a Slit 

Consider the slit shown in Fig. 1.8a.  If this slit is placed in the x-y plane in 
Fig. 1.7, then the image produced in the p-q plane will look like Fig. 1.8b. 
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Figure 1.8  (a) Slit in x-y plane 
       (b) Fourier transform in p-q plane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The slit can be thought of as the product of two rect functions and we can 

write  as  

    (1.29) 

where N is the width of the slit and M is the height of the slit.  From Eq. (1.8) 
we can write the Fourier transform of  in Eq. (1.29) as 
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Figure 1.9  The function  
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From Eq. (1.28), we see that the light intensity in the p-q plane shown in 
Fig. 1.8b will be proportional to a sinc2 function of the type shown in Fig. 1.9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 1.8a, the height of the slit, M, is 25 times the width, N.  From Eq. 

(1.30) it follows that the horizontal sinc2 function in the p-direction in Fig. 1.8b 
will be spread out 25 times wider than the vertical sinc2 function in the q-
direction as shown.  We will look more closely at scaling and shifting theorems 
in Chapter 2.   
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